
Practice Midterm 2 Solutions
Prof. Y. Oruç’s ENEE350, Fall 2010

University of Maryland

Prepared by: Tim Creech

10/30/2010

Problem 1: (30 points.)

(a)

See the microcode listing below:

1 ABUS=0; BBUS=1; OBUS=ABUS+˜BBUS+1; A=OBUS; //A=−1
2 ABUS=∗; BBUS=1; OBUS=BBUS; B=OBUS; //B=1
3 ABUS=A; BBUS=∗; OBUS=ABUS+8; A=OBUS; //A=7; (c a l l t h i s A ’ .)
4 ABUS=∗; BBUS=B; OBUS=BBUS+8; B=OBUS; //B=9; (c a l l t h i s B ’ .)
5 ABUS=A; BBUS=B; OBUS=ABUS+˜BBUS+1; A=OBUS; //A=A’ − B’
6 ABUS=A; BBUS=B; OBUS=ABUS+˜BBUS+1; A=OBUS; //A=A’ − 2B’
7 ABUS=A; BBUS=B; OBUS=ABUS+˜BBUS+1; A=OBUS; //A=A’ − 3B’
8 ABUS=1; BBUS=1; OBUS=ABUS+BBUS; MAR=OBUS; //MAR=2
9 ABUS=MAR; BBUS=∗; OBUS=ABUS+8; MAR=OBUS; //MAR=10

10 ABUS=MAR; BBUS=∗; OBUS=ABUS+8; MAR=OBUS; //MAR=18
11 ABUS=A; BBUS=∗; OBUS=ABUS; MDR=OBUS; //MDR=A
12 ABUS=1; BBUS=∗; OBUS=ABUS; wr i t e=OBUS; //Memory[18]=MDR, or Memory[18]=A

The corresponding binary encodings follow immediately from the above listing and the reference table
provided:

1 00 000 011 0100 0000
2 00 000 011 0001 0110
3 00 001 000 1001 0000
4 00 000 010 1010 0110
5 00 001 010 0100 0000
6 00 001 010 0100 0000
7 00 001 010 0100 0000
8 00 100 011 0010 0101
9 00 011 000 1001 0101

10 00 011 000 1001 0101
11 00 001 000 0000 0100
12 00 100 000 0000 1101

(b)

Note: Microstore addresses are in decimal, not hexadecimal.

Location Microcode Instr. Type Explanation

0d100 01 0001 0001100111 Branch If A==0, go to 103.
0d101 00 001 011 0100 0000 Data Transfer ABUS=A; BBUS=1; OBUS=ABUS-BBUS; A=OBUS; (Subtract 1 from A.)
0d102 01 0011 0001100100 Branch Unconditionally, go to 100.
0d103 00 000 011 0001 0111 Data Transfer RET_SET=1; return.

This microprogram repeatedly subtracts 1 from A until A==0.

1

ENEE350 - University of Maryland Practice Midterm 2 Solutions

Problem 2: (20 points.)

(a)

Using the LRU eviction policy:
Block encountered: 1 7 6 6 5 4 3 3 3 5 2 1 1 7 5 6
Cache contents: 1 17 176 176 576 546 543 543 543 543 523 521 521 721 751 756
Cache hit? X X X X X

(b)

Using the OPT eviction policy:
Block encountered: 1 7 6 6 5 4 3 3 3 5 2 1 1 7 5 6
Cache contents: 1 17 176 176 175 145 135 135 135 135 125 125 125 175 175 165
Cache hit? X X X X X X X

(c)

The sequence is 16 accesses long. When using the LRU eviction strategy there were 5 hits, for a rate of
5
16 ≈ 0.3125. When using OPT eviction there were 7 hits, for a rate of 7

16 ≈ 0.4375. In this case, the OPT
eviction policy performs better.

Problem 3: (30 points.)

Since each block/frame contains 64 bytes, let the lowest 6 bits of the accessed memory byte refer to the
byte offset within the mapped frame. Since we have 8 sets, let the next 3 bits select the set from which
the mapped frame is chosen. Finally, let the remaining 7 bits be the tag which will distinguish between the
multiple blocks which could occupy a frame.

(a)

Since each set has 32 frames, this is a 32-way set-associative cache, and each address will potentially be
mapped to any of the 32 frames.

(i) 1001 1011 1100 1111 - Here, the bits “111” indicate that this address’s block will be mapped to set 7’s
frames.

(ii) 1101 1001 1101 1101 - Here, the bits “111” indicate that this address’s block will be mapped to set 7’s
frames.

(iii) 1000 1111 1100 0111- Here, the bits “111” indicate that this address’s block will be mapped to set 7’s
frames.

(b)

In this case, the 7-bit tag and 3-bit set address combine to create a 10-bit block address. This means that
blocks “1001101111”, “1101100111”, and “1000111111” are being accessed. In decimal, these are blocks 623,
871, and 575. They all map to the same set, but the sets are large enough to hold all three blocks (and
more). Assuming no evictions during the three accesses, the blocks in cache will be:

• 623 after (i)

• 623 and 871 after (ii)

• 623, 871, and 575 after (iii).

2

ENEE350 - University of Maryland Practice Midterm 2 Solutions

(c)

The following assumes that byte address accesses are performed uniformly at random over the entire range
of the address space.

Since there are 8 sets and 1024 blocks, each set services 1024/8=128 blocks. Each of these 128 blocks can
be assigned to any one of the 32 frames within the set. Note that block x would never be cached twice in
the cache.

Due to the fact that 32 different blocks from a possible set of 128 blocks will be cached in any given
block’s mapped set, there is a probability of 32

128 = 0.25 that an accessed address will be within one of these
32 blocks and result in a hit.

The probability that there is a cache miss is equal to the probability that there is not a cache hit: 1−0.25,
or 0.75.

Problem 4: (20 points.)

The Vesp program will have the following logic:

1. Copy Mem[0x10] to B.

2. Compare B with 0x6c. If equal, jump to the ‘l’ routine.

3. Compare B with 0x73. If equal, jump to the ‘s’ routine.

4. Compare B with 0x65. If equal, jump to the ‘e’ routine.

5. Compare B with 0x72. If equal, jump to the ‘r’ routine.

6. Compare B with 0x77. If equal, jump to the ‘w’ routine.

7. The input was not recognized, so jump to the command input routine.

See the Vesp code listing below:

3001 // Copy the command in to B.
0010

2000 // Load the charac ter ‘ l ’ to A.
006 c
0300 // Get the d i f f e r e n c e between ‘ l ’ and A.
5uuu // Jump to the ‘ l ’ rou t ine i f the d i f f e r e n c e was 0 .

2000 // Load the charac ter ‘ s ’ to A.
0073
0300 // Get the d i f f e r e n c e between ‘ s ’ and A.
5vvv // Jump to the ‘ s ’ rou t ine i f the d i f f e r e n c e was 0 .

2000 // Load the charac ter ‘ e ’ to A.
0065
0300 // Get the d i f f e r e n c e between ‘ e ’ and A.
5www // Jump to the ‘ e ’ rou t ine i f the d i f f e r e n c e was 0 .

2000 // Load the charac ter ‘ r ’ to A.
0072
0300 // Get the d i f f e r e n c e between ‘ r ’ and A.
5xxx // Jump to the ‘ r ’ rou t ine i f the d i f f e r e n c e was 0 .

2000 // Load the charac ter ‘w ’ to A.
0077
0300 // Get the d i f f e r e n c e between ‘w ’ and A.
5yyy // Jump to the ‘w ’ rou t ine i f the d i f f e r e n c e was 0 .

4 zzz // Jump to ask the user to g i v e v a l i d input again , s ince we didn ’ t
// recogn i ze t h i s input .

3

